VALINOR: TRANSPORT-AGNOSTIC PACKET PRIORITIZATION AND ORDERING AT THE EDGE Erfan Sharafzadeh, Sepehr Abdous, Sougol Gheissi, Soudeh Ghorbani Johns Hopkins University

1. Microburst Dilemmas

Datacenters are the beating heart of online communication services. Designing a datacenter network depends on many objectives;

Datacenter	Low Request Latency
Network Design	High Application Throughput
	High Resource Utilization !
	Accomodate Bursty Traffic

However, these factors come to a contrast when facing short-term congestion periods originating from bursty traffic;

Micosecond-	Are Hard to Detect and Absorb	
scale Congestion Events	Cause Short-term Queueing Delays	
	Incur Costly Packet Drops	

How to reconcile **low request latency** with **high resource utilization** in the face of microbursts?

2. Call for Fine-grained Load-balancing

In-network Load- balancers & Schedulers	Packets	Distributes the load evenly
		Prone to causing heavy re-ordering!
operate at granularity of	Flowlets	Needs tuning to control re-ordering and load distribution
	Flows	Uneven balance for skewed workloads

No re-ordering

If only we could get rid of packet re-ordering...

3. Generic Reordering Resiliency

Depend on transport protocol header Existing information Solutions to Packet Are designed for operating system Reordering internal packet buffers Existing fine-grained schedulers can result in severe packet

re-ordering. Ordering shim layers can rearrange the packets, however, these proposals are transport-/platform-dependent.

LAS Packet Scheduler % Packet Reordering 0

4. Realizing Transport-agnostic **Multi-discipline Scheduling and Ordering**

VALINOR is composed of extensions to the TX and RX datapath in data center end-hosts' network stacks and is designed with the following properties in mind:

- 1. Ability to handle packet reordering in a protocol-agnostic and platformindependent manner.
- 2. Host-centric packet prioritization to help in-network decisions.
- 3. Detecting and prioritizing packet re-transmissions.

5. Implementation

Contact the first author at erfan@cs.jhu.edu

6.5M Reqs./second throughput for UDP flows

OMNET++ Implementation

6. Preliminary Results

Valinor's packet ordering reduces the flow completion times of different load-balancing and packet scheduling schemes and substantially raises the goodput for large flows.

7. Ongoing Work

Each packet drop incurs an extra timeout in Valinor's ordering buffer. We're working on ways to **detect** packet drops in Valinor.

Timely reaction to microbursts requires coordinating between the network and end-hosts. We are working on a priority deflection forwarding mechanism called Vertigo.

Check out our other poster!

References

[1] Alizadeh, Mohammad, et al. "CONGA: Distributed Congestion-Aware Load Balancing for Datacenters." SIGCOMM '14, 2014.

[2] Bai, Wei, et al. "Information-Agnostic Flow Scheduling for Commodity Data Centers." NSDI '15, 2015. [3] Geng, Yilong, et al. "Juggler: A Practical Reordering Resilient Network Stack for Datacenters." EuroSys '16, 2016. [4] Ghorbani, Soudeh, et al. "DRILL: Micro Load Balancing for Low-Latency Data Center Networks." SIGCOMM '17, 2017.

[5] Alizadeh, Mohammad, et al. "pFabric: Minimal near-Optimal Datacenter Transport." SIGCOMM '13, 2013.

