
Implementable selective deflection with Canary

Sepehr Abdous
Johns Hopkins University

Erfan Sharafzadeh
Johns Hopkins University

Soudeh Ghorbani
Meta/Johns Hopkins University

Abstract
Datacenter traffic studies unveil microbursts, microsecond-

scale periods of high utilization that cause packet drops. Given
the low average link utilization, packet deflection, i.e., re-
routing packets to neighboring switches when the output
queue is full, can be used as a defensive mechanism against
microbursts. However, naively deflecting packets can cause
head-of-the-line blocking in switch buffers and exacerbate the
congestion in the network by increasing the overall network
utilization. To avoid these challenges, recent work selectively
deflects the packets of large flows. While selective deflection
is shown to ensure low latency, it imposes implementabil-
ity hurdles as it requires packet extraction from arbitrary
positions in the buffer. In this project, we tackle these im-
plementability challenges in existing hardware. We propose
Canary, an approximation of selective deflection that identifies
the potential deflection candidate packets before they enter the
switch buffers. This eliminates the need for extracting pack-
ets from the queues at runtime. Our simulation results show
that Canary achieves comparable performance to selective
deflection and reduces the mean query completion time by
58%, 66%, and 69% compared to ECMP, AIFO, and random
deflection. Canary also reduces latency by 30% compared to
the baseline drop-tail queue on a PISA switch hardware.

1 Introduction
Microbursts, sudden surges in the link utilization occurring
in minuscule time scales, are prevalent in datacenters [2, 8].
These short-term spikes are a main cause of packet drops, poor
performance, and SLO violation [1]. A large body of work
[1, 2, 4, 6, 7] attempts to either proactively avert microburst
creation or reactively absorb them when they occur. Among
all these proposals, selective deflection is shown to provide
good reaction time and resiliency against microbursts [1].
Unfortunately, selective deflection requires complex mecha-
nisms, such as packet extraction from arbitrary positions in
the queue, to be implementable while existing buffer man-
agement technologies are limited to strictly priority FIFO
queues [6].

To realize implementable selective deflection, we propose
Canary, a technique that approximates selective deflection by
identifying and rerouting the packets that are candidates for
deflection before they enter the switch traffic manager. This
eliminates the need to extract packets that are already inserted
in the queue and thus removes the challenges of implementing
selective deflection on commodity programmable switches.
Inspired by AIFO [6], an early drop technique that prioritizes
packets based on the remaining bytes of their corresponding
flows to approximate Shortest Remaining Processing Time
(SRPT) scheduling, Canary exploits the queue occupancy
information, the priority of the newly arrived packet, and the
priorities of the packets previously inserted in the queue to
decide if a packet should be forwarded, deflected, or dropped
as it enters the ingress pipeline. Canary uses a sliding window
to compare the priority of the newly arrived packets with the
previous packets that were inserted in the queue.

We compare Canary against ECMP and AIFO. We also
compare Canary with DIBS [7] and Vertigo [1], representa-
tives of random and selective deflection, respectively. Our
simulations results show that Canary performs comparably to
Vertigo in completing incast queries while achieving 50.90%,
38.11%, and 90.56% lower average query completion time
than ECMP, AIFO, and DIBS, respectively.

2 Early Deflection
Recent work demonstrates that selectively deflecting pack-
ets of large flows can effectively address the drawbacks of
random deflection, such as head-of-the-line blocking and con-
gestion aggravation [1]. To realize selective deflection, when
a packet arrives and the output queue is full, Vertigo extracts
the packet with the lowest priority, i.e., the largest number of
remaining bytes in its corresponding flow, from the congested
queue and deflects it. While this is shown to be resilient to
burstiness, it requires packet extraction from arbitrary loca-
tions in the queue which is not implementable in commodity
switch hardware. To overcome this challenge, we approxi-
mate selective deflection by deflecting packets before they
enter the traffic manager. We propose Canary, a technique

1



55 65 75 85 95
Aggregate Network Load %

0

2

M
ea

n 
QC

T 
(s

) ECMP
DIBS
Vertigo

AIFO
Canary

(a) Large RTO

55 65 75 85 95
Aggregate Network Load %

2

4

Ta
il 

QC
T 

(s
)

(b) Large RTO (tail)

0 1 2 3
QCT (s)

0.0

0.5

1.0

CD
F

ECMP
DIBS
Vertigo

AIFO
Canary

(c) Small RTO
Figure 1: Canary outperforms ECMP, DIBS, and AIFO under dif-
ferent degrees of load and performs closely to Vertigo.

that uses Early Deflection to approximate selective deflection
while avoiding its implementability challenges.

For Canary’s design, we assume that packets are marked
with the remaining bytes of their corresponding flows. The
lower the remaining bytes, the higher the packet’s priority1.
When a packet arrives and there is enough space in the desti-
nation queue, Canary uses the destination queue occupancy
information and the newly-arrived packet’s priority to deter-
mine whether the packet should be enqueued or deflected.
Deflecting low priority packets as they arrive leaves head-
room for absorbing bursts of packets with higher priorities. If
the destination queue is full, Canary deflects the packet irre-
spective of its priority. Since queue occupancy information is
not available in the ingress pipeline of earlier releases of com-
modity programmable switches, we use special packets that
recirculate inside the switch and transfer the queue occupancy
information from the egress to the ingress pipeline [6].

While deflecting a packet, Canary uses the same technique
to decide if the deflected packet should be enqueued into
the selected queue or get dropped. Under severe congestion,
Canary rejects the packets from being enqueued into the des-
tination and deflection queues and drops them to signal the
congestion to the endpoints.

Canary’s design can adopt early drop paradigms such as
Random Early Drop (RED) [3] or AIFO [6], to determine
whether to forward, deflect, or drop packets as they arrive.
In particular, when a packet arrives, Canary applies the early
drop algorithm on the forwarding port and deflects the packet
if the algorithm rejects enqueueing it. When deflecting a
packet, Canary applies the same algorithm to decide whether
to enqueue the packet into the deflection port or drop it.

3 Evaluation
We evaluate Canary using Omnet++ simulations. We simulate
a 2-tier leaf-spine topology consisting of 4 spine switches, 8
leaf switches, and 40 machines connected to each leaf. The
links connecting the spines to leafs and leafs to servers have
40Gbps and 10Gbps bandwidth, respectively. The switches
have a 300KB queue capacity per port [1, 7]. We evaluate
Canary under 50% background load and different degrees of
incast using Facebook’s cache follower and Google’s web
search workload [2, 5]. We compare the performance of Ca-
nary with ECMP (the forwarding protocol widely deployed in
datacenters), AIFO [6] (an approximation of SRPT schedul-

1There are other alternatives for marking packets, such as Least Attained
Service (LAS) in which packets carry the number of bytes sent by their flow.
However, marking packets based on their flows’ remaining number of bytes
is shown to be more effective [1].

ing using early packet drop), DIBS [7] (a random packet
deflection technique), and Vertigo [1] (representing selective
deflection). For our evaluations, we measure the Query Com-
pletion Times (QCT), i.e., the time taken from initiating the
incast event to receiving all the responses.

First, we set the initial RTO to one second and the mini-
mum RTO to 10ms [1,7]. Figures 1a and 1b present the results.
With large RTO values, AIFO will perform poorly due to its
early drop mechanism which causes more packet drops and
imposes considerable latency when the RTO values are large.
Canary, on the other hand, uses early deflection to avoid loss
of performance with large RTO values. In particular, under
95% load, Canary achieves 58.41%, 66.41%, and 68.89%
lower mean QCT and 40.72%, 47.41%, and 50.04% lower
tail (99th percentile) QCT than ECMP, AIFO, and DIBS, re-
spectively. With large RTO values, Vertigo completes 12.45%
more queries than Canary by dropping 34.32% fewer pack-
ets. We also test Canary with small RTO values (600µs). The
results, presented in Figure 1c, illustrate that, while outper-
forming ECMP, AIFO, and DIBS, Canary performs close to
Vertigo as the latency penalties of packet drops are lower due
to small RTO values.

We also implement Canary on a Tofino switch using 1600
lines of P4 code. To test our implementation, we run Mem-
cached and Iperf traffic simultaneously in a testbed setup
consisting of three server machines connected to two Canary
switches. Our initial results show that Canary achieves 30%
lower mean response times than a baseline drop-tail queue
for Memcached requests.

Future work. We are currently testing Canary’s imple-
mentation under various traffic patterns. To further evaluate
the effectiveness of early deflection, we implement Canary
with other early drop paradigms, e.g., RED, and other rank-
ing paradigms, e.g., Least Attained Service (LAS). We hope
our approximation moves packet deflection one step forward
toward practicality.

References

[1] Sepehr Abdous et al. Burst-tolerant datacenter networks with
vertigo. In CoNEXT, 2021.

[2] Mohammad Alizadeh et al. Data Center TCP (DCTCP). In
SIGCOMM, 2010.

[3] Sally Floyd et al. Random early detection gateways for conges-
tion avoidance. IEEE/ACM ToN, 1993.

[4] Gautam Kumar et al. Swift: Delay is Simple and Effective for
Congestion Control in the Datacenter. In SIGCOMM, 2020.

[5] Arjun Roy et al. Inside the Social Network’s (Datacenter) Net-
work. In SIGCOMM, 2015.

[6] Zhuolong Yu et al. Programmable packet scheduling with a
single queue. In SIGCOMM, 2021.

[7] Kyriakos Zarifis et al. DIBS: just-in-time congestion mitigation
for data centers. In Eurosys, 2014.

[8] Qiao Zhang et al. High-resolution measurement of data center
microbursts. In IMC, 2017.

2


	Introduction
	Early Deflection
	Evaluation

