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Al is everywhere
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Scale of Al training is growing fast
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[*Multibody Models Generated from Natural Language.” Multibody System Dynamics ’24]

Large-scale Al training tasks are typically distributed

across multiple machines
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Efficient network communication
is critical
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[“SwitchML Scaling Distributed Machine Learning with In-Network Aggregation” NSDI ‘21]

Network bandwidth is a major

bottleneck
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[“Al and Memory Wall” IEEE Micro ‘24]



Collective operations are BW-inefficient

Distributed Al training
A

< Broadcast > < All-Gather > < All-Reduce >

( Distributing gradients ) ( Collecting model shards ) ( Synchronizing gradients )
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Collective operations are BW-inefficient

Distributed Al training
A

< Broadcast > < All-Gather > < All-Reduce >

( Distributing gradients ) ( Collecting model shards ) ( Synchronizing gradients )
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“Multicast is not scalable”

["ESM: Efficient and Scalable Data Center Multicast Routing”
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*  Naive multicast requires 2°* rules in a 64-
ary fat-tree

* Compression-based mechanisms (e.g.,
RSBF) create >100% packet header
overhead in 32-ary fat-tree

[*Achieving High Efficiency for Datacenter Multicast using
Skewed Bloom Filter.” ICPP *24]

* On-demand approaches (e.g., Orca) create

multi-millisecond delay

[“Orca: Server-assisted Multicast for Datacenter Networks.”
NSDI ’22]



“Multicast is net scalable”

["ESM: Efficient and Scalable Data Center Multicast Routing”
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Layer-peeling greedy
algorithm

Bounded approximation
Polynomial execution time
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*  Naive multicast requires 2°* rules in a 64-
ary fat-tree

* Compression-based mechanisms (e.g.,
RSBF) create >100% packet header
overhead in 32-ary fat-tree

[“Achieving High Efficiency for Datacenter Multicast using
Skewed Bloom Filter.” ICPP *24]

* On-demand approaches (e.g., Orca) create

multi-millisecond delay

“Orca: Server-assisted Multicast for Datacenter Networks.”
msm 92]

Power-of-two prefix
aggregation ’ )

From 4 billion to only 31 rules
< 8 B per packet overhead



Peeling complexity one layer at a time
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Peeling complexity one layer at a time

D: number of destinations
F: number of hop layers -- length of longest shortest path

F is typically small in Clos networks
The obtained multicast tree is near-optimal
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Collapsing state space via prefix aggregation

* Al job placement is bin-packed

* Switch state overhead can be significantly reduced using power-
of-two-prefix rules
* Changing switch state requirement from exponential to linear
* 32-ary fat-tree: number of states reduces from 4 billion to 31

Match Action

(prefix/mask) (output ports)
E **/0 forward(0,1,2,3) Server [ )
5 0*/1 forward(0,1)
2 1/1 forward(2,3)
% 00/2 forward(0)
% 01/2 forward(1)
S
S 10/2 forward(2)
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11/2 forward(3)
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PEEL outperforms state-of-the-art techniques
[ Broadcast ]

8-ary fat-tree
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900 GBps NV-Links [ PEEL accelerates Broadcast by up to 77x
compared to other baselines
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Takeaway: Multicast is scalable

PEEL achieves: PEEL: Prefix-

: . . Encoded Efficient
Linear switch state requirements

. :
Small packet header overhead e (’)

Up to 77x performance benefit :

Open research avenues: - e - 1
* Multicast x Transport v \
* Multicast x Heterogeneity Layer-peeling <’ > Prefix
greedy algorithm aggregation

Linear switch state overhead

Bounded approximation
Small packet header overhead
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