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Problem: local power limitation, increased complexity Solution: training across multiple datacenters
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Motivation

Significant inter- and intra-DC traffic co-existence inside DCs
Efficient communication becomes challenging

Problem: local power limitation, increased complexity Solution: training across multiple datacenters
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RTT from A to B = ~12us RTT from DC, to DC; = 10ms

1000x latency difference /

RTT = Round-Trip Time 4
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Inter- and intra-DC RTTs have huge gaps
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Inter-DC RTT

Unfairness / slow convergence to fairness

Huge gap in congestion notification and reaction granularity
Existing solutions fall short in efficiently converging to fairness
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[BBR: Congestion-based congestion control., Commun. ACM 2017] [Congestion Control for Cross-Datacenter Networks, ToN 2022]

[Multi-Path transport for RDMA in datacenters, NSDI 2018]
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Inter- and intra-DC RTTs have huge gaps
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>1 ms RTT across datacenters

BDP <-> Buffer sizes mismatch

Slow loss detection and recovery

~ 100 MB buffering per port with 10 ms inter-DC RTT

Unfairness / slow convergence to fairness

Huge gap in congestion notification and reaction granularity
Existing solutions fall short in efficiently converging to fairness

Latency Bound

Most messages are latency
bound.

Single loss can have a
dramatic impact.
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Incorporates erasure coding
with load balancing (UnolLB)

to limit drops.
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aspect
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

Phantom Queues
Virtual queues
implemented as a counter
z Increase when a packet
arrives
Decrease at a constant rate

BDP <-> buffer size mismatch
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

BDP <-> buffer size mismatch

Google RPCs beside eight long-lived cross-DC flows
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

We can potentially achieve fairness using AIMD.

BDP <-> buffer size mismatch ECN
marked
: : But, convergence happens slowly.
Phantom Queues (PQs) Inter-DC
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flow
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

We can potentially achieve fairness using AIMD.

BDP <-> buffer size mismatch ECN
marked

' A But, convergence happens slowly.

P
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flow
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Rate reduced at different granularities, prolonging convergence to fairness

Same degree of congestion captured differently, causing configuration sensitivity
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

We can potentially achieve fairness using AIMD.

BDP <-> buffer size mismatch [Congestion Control for Cross-Datacenter Networks, ToN 2022]
' But, convergence happens slowly.
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Unified reaction granularity to
congestion Rate reduced at different granularities, prolonging convergence to fairness

Same degree of congestion captured differently, causing configuration sensitivity
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

8:1 incast from senders both inside and across datacenters

BDP <-> buffer size mismatch g 1B = MPRDMA+BBR T_é;_ 100 __m
o)
F S 75 = 57
2 2 Inter-DC flow
0 50 g 507 I
Phantom Queues (PQs) g -
c 25 £ 251
LT I R
GC) 0 T T T T g 0 - T T T
2 0 250 500 750 0 200 400 600
Time (ms) Time (ms)
Unfairness/slow convergence Unfairness Slow convergence to fairness
; 2100
e . . o3 Uno
Unified reaction granularity to & .
congestion > 751 Ideal_falr
f T 50- sending rate
. . o
Drastic rate reduction under o
. c E
extreme congestion S 25 _Psn___. N gl
' o 0L : . :
ok 0 200 400 600

Smoother rate reduction
upon phantom queue
congestion

Time (ms)
Fast convergence to fairness



msSPCL 9. S & cscs ETHziirich

spcl.ethz.ch

UnoRC: Reliable connectivity through load balancing and erasure coding

Path,

% .
ruption

Failure

Packet losses are destructive when
latency-bound

Losses are recovered through erasure
coding

Path,
Source Destination
Path,
(ormom) (= -~
| o %
I Block | Parity I Block |
- — — o Packet - - — o

,1 EC Configuration

However, a link
failure would still
prevent the block

from being
delivered

Data Packet is lost
but receiver can still
reconstruct the
block
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UnoRC: Reliable connectivity through load balancing and erasure coding

Packet losses are destructive when Path,

latency-bound

Path,
Losses are recovered through erasure
coding
Path, —
Link
Erasure coding helps recoyery from Source Failure Destination
drops but not Vfrom failures Path,
T ET A (= = T
Adaptive load balancing to utilize I I I *
multipathing | Block 1 Party | Block |
~ — — o Packet - - -
Tightly integrate LB with EC to ensure /1 EC Configuration _
resiliency even with failures The block is UnoRC quickly learn
reconstructed even to avoid the failing
with a link failure path by looking at
thanks to when it last was

multipathing active
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UnoRC: Reliable connectivity through load balancing and erasure coding

Measured Drop Rates

Packet losses are destructive when
Losses Within Setup 1 (65ms RTT) | Setup 2 (33ms RTT)

latency-bound s Wit

| A a Bloc Drops Loss Rate | Drops Loss Rate

1 97403 3.0x107%* | 12785 4.0x107°

Losses are recovered through erasure 9 23084 75x%10-5 | 7262 2.3 % 10-5

coding 3 5007 1.6x107° | 1560  4.9x107°

Table 1: Packet loss information for two datacenter configurations.
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Uno is performant under realistic workload
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Slow loss detection and recovery

>1 ms RTT across datacenters

BDP <-> Buffer sizes mismatch

~ 100 MB buffering per port with 10 ms inter-DC RTT

Unfairness / slow convergence to fairness

Huge gap in congestion notification and reaction granularity
Existing selutions fall short in efficiently converging to fairness
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UnoCC: fast and fair congestion control for intra- and inter-DC traffic

8:1 incast from senders both inside and across datacenters

BDP <-> buffer size mismatch MPRDMA+BBR
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UnoRC: Reliable connectivity through load balancing and erasure coding

Packet losses are destructive when
latency-bound

Path;

Path;
Losses are recovered through erasure DC
coding A
Path;
Link

Erasure coding helps recovery from Source Failure T

drops but not from failures Path,
(ornm rT T T
Adaptive load balancing to utilize \ I %
multipathing | Block 1 Parity I Block 1

Packet

Tightly integrate LB with EC to ensure
resiliency even with failures

/L EC Configuration

The block is
reconstructed even
with a link failure
thanks to
multipathing

UnoRC quickly learn
to avoid the failing
path by looking at

when it last was
active
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Uno is performant under realistic workload
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