
Burst-tolerant Datacenter Networks with VERTIGO

Sepehr Abdous*, Erfan Sharafzadeh*, Soudeh Ghorbani

*Co-first Authors

The 17th International Conference on emerging Networking EXperiments and Technologies, CoNEXT
‘21

Datacenter traffic is
bursty in short
timescales

2

Majority of drops are due to microbursts

3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
ro

p
 R

a
te

Average Link Utilization
[Zhang et al., “High-Resolution Measurement of Data Center Microbursts.”, IMC ’17]!Microbursts!

High utilization periods in
switch buffers that lasting 10s

of µseconds

Edge-centric congestion control: slow for
microbursts

4

Congestion control using queue occupancy data
• HPCC [SIGCOMM ’19]

Congestion control using round-trip time variations

• Swift [SIGCOMM ’20]

Edge is still slow for microbursts.

Why not react to them in the network core?

Deployed at the edge
Require at least 1 RTT to identify

and recover from packet loss

Goal: Managing
microbursts in the
network, in real-time

5

Deflection: a realization of in-network reaction

6

Randomly re-routing packets that arrive at a full buffer

There is plenty of free buffer in
neighbors

The switch pushes the packet into another
output buffer instead of dropping it

Deflected packets shortly linger in the network

SI

SII

To Switch SII

To Switch SI

There is enough room in the destination buffer
when they arrive back at ToR

Destination host

Challenges of random deflection

7

0

1

2

3

25 45 65 85

G
O

O
D

P
U

T
 (

G
B

P
S)

OFFERED LOAD %

Random Deflection Droptail DCTCP

0

0.5

1

1.5

25 45 65 85

F
C

T
 (

S)

OFFERED LOAD %

1. Deflection collapses under high loads.

20
40
60
80

100

0.06 0.13 0.19 0.31 0.44 0.56 0.69 0.81 0.94

#
 O

O
O

 P
a

ck
e

ts
 (

M
)

Incast/Background Ratio

Random Deflection ECMP

2. Deflection causes heavy reordering

Up to 10x more out-of-order packets
~17% Goodput reduction

0

5

10

15

N
o

rm
a

liz
e

d
 M

ic
e

fl
o

w

Q
u

e
u

in
g

 T
im

e 3. Deflection leads to head

of line blocking & starvation
111% longer waits for
mice flows (<100KB)

Setup
• 4-8-40 Two-tiered leaf-spine
• 10GB server-to-ToR, 40GB aggregate links
• DCTCP transport
• Workload: FB cache, fixed background + variable Incast

Random deflection causes head-of-the-line blocking

8

Random deflection saves
flows regardless of their

size

A Large flow continues to send traffic
instead of backing off

Short flows are stuck in congested
buffers

Neighbor buffers fill up, innocent flows
are victimized

Random deflection breaks under load

9

Deflected packets traverse longer
paths

Network utilization is increased

The senders do not back-off in-time,
exacerbating the congestionPacket loss, the main congestion

signal for congestion control
techniques is removed from the
equation

Network collapses under load!

With
random

deflection

U
ti

li
za

ti
o
…

S
e

n
d

in
g

 …

Deflection

Solution
Detecting the flows that are more likely to contribute to lasting

congestion and prioritizing their packets for:
(a) deflection under light load

(b) drop under high load

Problem
 Random deflection treats the flows contributing to long lasting

congestion similar to short-lived microbursts

Host-assisted deflection

10

Flow size information
(remaining flow size to

realize an approximation of
SRPT)

Handling re-ordering

Congestion-aware + flow-aware
forwarding decisions

Remaining flow size, a good indicator for lasting congestion.

Vertigo: the big picture

11

port A

Egress Buffers

port R

II

Network Interface

Vertigo
Marking
Component

Network

Transport

Application

0 #
1 #
2 #
3 #
4 #
5 #
...
..

I

port B

Flow Info.
Hash Table

TX Path

Network Interface

Vertigo
Ordering

Component

Network

Transport

Application

Ordering
Buffers

RX Path

!

! !

S R

Network

III

A
B

Packet with
largest

remaining
flow size is
deflected

packet with
smallest

remaining flow
size stays in the

buffer

Preventing collapse using flow length information

12

Vertigo Fabric
I. Forwarding: Least remaining flow size

II. Congestion: Deflect instead of Drop
III.Deflection: Highest remaining flow size

IV.Load-balancing: Power of 2 choices

Vertigo identifies the packet with highest
remaining flow size from a full buffer

Randomly chooses two destination
buffers, selects the one with least queue
occupancy

Deflects the selected packet to chosen
buffer

Inserts the arrived flow to its correct
position w.r.t. its remaining flow size

SI

SIII

To Switch SIII

To Switch SI

SII

To Switch SII

Packet from a short flow arrives at a full
buffer

Vertigo components at the host

• Marking the packets based on remaining flow size

• Detecting re-transmissions to ensure consistency

• Boosting re-transmissions to avoid starvation
• Re-transmitted packets appear as packets of a small flow

• Ordering shim layer at the destination

• Detailed design can be found in paper

13

Simulation results: Vertigo’s superior performance

0

2

4

6

35 45 55 65 75 85 95

P
9

9
 Q

C
T

 (
S)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

0

0.5

1

1.5

35 45 55 65 75 85 95

M
E

A
N

 F
C

T
 (

S)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

14

50

100

35 45 55 65 75 85 95

#
 D

R
O

P
S

(M
)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

Setup
• 4-8-40 Two-tiered leaf-spine
• 10GB server-to-ToR, 40GB aggregate links
• DCTCP transport
• Workload: FB cache, fixed background + var.

Incast

ECMP DRILL DIBS Vertigo

76%54%57%

Improvements in tail
query completion times
at the highest load

Vertigo & DIBS, same drop rate, different outcomes!FCT of all flows (large and
small) grow gracefully under
Vertigo

Vertigo achieves near-0 drops with Swift

0.00

0.01

0.10

1.00

10.00

35 45 55 65 75 85 95

P
9

9
 Q

C
T

 (
S)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

15

-1

1

3

5

7

9

11

13

35 45 55 65 75 85 95

#
 P

A
C

K
E

T
 D

R
O

P
S

(M
)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

Swift cuts the tail QCT for all
systems

Vertigo offers near-zero drop
performance when combined
with Swift

0

0.5

1

1.5

2

2.5

3

3.5

55 60 65 70 75 80 85 90 95

VERTIGO No Sched No Deflection No Ordering ECMP Baseline

Vertigo component analysis

16

500

550

600

650

700

55 60 65 70 75 80 85 90 95

A
gg

re
ga

te
 A

p
p

.
th

ro
u

gh
p

u
t

(G
b

p
s)

Offered Load %

Vertigo

No-ordering

~10%

0

0.2

0.4

0.6

0.8

55 60 65 70 75 80 85 90 95

M
ea

n
 Q

C
T

 (
s)

Offered Load %

Power-of-two Vertigo Random Vertigo

Deflection helps
complete incasts faster

Scheduling prevents
collapse under high loads

Ordering layer improves
application throughput

Reduced probability of finding free
buffersImpact of power of

two forwarding
vs random

0

50

100

No
Boosting

x2
Boosting

x4
Boosting

x8
Boosting

Q
u

e
ry

C

o
m

p
le

ti
o

n

R
a

ti
o

 %

>50%

Boosting prevents starvation, helps complete flows

17

Deflection: Cuts the completion time tail

Scheduling: Prevents the collapse

Ordering: Preserves app throughput

Boosting: Prevents starvation

Vertigo Conclusions

18

Key Takeaway:
 To properly react to microbursts, network-centric real-time action and end-host’s advance

knowledge of flow sizes are vital!

Challenges:
• Both host and network must be changed

• Existing queue management abstractions are not enough

Check out Vertigo artifacts!
https://github.com/hopnets/vertigo-artifacts

Vertigo:
A hybrid solution to tolerate micro-scale bursty traffic by changing the forwarding decisions

upon facing imminent packet loss

Thank you!
Contact us

• sabdous1@jhu.edu

• erfan@cs.jhu.edu

19

mailto:sabdous1@jhu.edu
mailto:erfan@cs.jhu.edu

Backup slides

20

Handling packet reordering

• Mark packets with remaining flow size (RFS) @sender

• Flow size tracking is transport-independent

• RFS must be unique per-flow

• RFS used @destination to order the packets

22

NIC

VERTIGO
Ordering layer

Network Stack

?
?

NIC

VERTIGO
Marking layer

Network Stack

0 #
1 #
2 #
3 #
..

Pre-allocated Per-flow
ordering buffers

Delayed packets

In-order packets
immediately
flushed to upper
layers

Saying no to starvation

• Keeping track of re-transmissions to ensure RFS consistency

• Boost the re-transmitted packet by cutting its RFS

23

NIC

VERTIGO
Marking layer

Network Stack

0 #
1 #
2 #
3 #
..

#

#

#

Boosted

Simple marking by counting upwards

What if flow size information is not available?

24

75006000450030001500

Remaining
flow size

12123

Least attained
service (LAS)

flowlet 2 flowlet 1

• The granularity of load-
balancing

• Choosing ordering timeouts
• Vertigo’s performance under

larger flows and larger-scale
Incasts

0
0.5

1
1.5

2
2.5

Moderate load
(55%)

Severe load
(95%)

M
ea

n
 Q

C
T

 (
s)

ECMP baseline

SRPT Vertigo

LAS Vertigo

	Slide 1: Burst-tolerant Datacenter Networks with VERTIGO
	Slide 2: Datacenter traffic is bursty in short timescales
	Slide 3: Majority of drops are due to microbursts
	Slide 4: Edge-centric congestion control: slow for microbursts
	Slide 5: Goal: Managing microbursts in the network, in real-time
	Slide 6: Deflection: a realization of in-network reaction
	Slide 7: Challenges of random deflection
	Slide 8: Random deflection causes head-of-the-line blocking
	Slide 9: Random deflection breaks under load
	Slide 10: Host-assisted deflection
	Slide 11: Vertigo: the big picture
	Slide 12: Preventing collapse using flow length information
	Slide 13: Vertigo components at the host
	Slide 14: Simulation results: Vertigo’s superior performance
	Slide 15: Vertigo achieves near-0 drops with Swift
	Slide 16: Vertigo component analysis
	Slide 17
	Slide 18: Vertigo Conclusions
	Slide 19: Thank you!
	Slide 20: Backup slides
	Slide 22: Handling packet reordering
	Slide 23: Saying no to starvation
	Slide 24: Simple marking by counting upwards

