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Datacenter traffic is 
bursty in short 
timescales
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Majority of drops are due to microbursts
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[Zhang et al., “High-Resolution Measurement of Data Center Microbursts.”, IMC ’17]!Microbursts!

High utilization periods in 
switch buffers that lasting 10s 

of µseconds



Edge-centric congestion control: slow for 
microbursts
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Congestion control using queue occupancy data
• HPCC [SIGCOMM ’19]

Congestion control using round-trip time variations

• Swift [SIGCOMM ’20]

Edge is still slow for microbursts.

Why not react to them in the network core?

Deployed at the edge
Require at least 1 RTT to identify 

and recover from packet loss



Goal: Managing 
microbursts in the 
network, in real-time
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Deflection: a realization of in-network reaction
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Randomly re-routing packets that arrive at a full buffer

There is plenty of free buffer in 
neighbors

The switch pushes the packet into another 
output buffer instead of dropping it

Deflected packets shortly linger in the network

SI

SII

To Switch SII

To Switch SI

There is enough room in the destination buffer 
when they arrive back at ToR

Destination host



Challenges of random deflection
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1. Deflection collapses under high loads.

20
40
60
80

100

0.06 0.13 0.19 0.31 0.44 0.56 0.69 0.81 0.94

#
 O

O
O

 P
a

ck
e

ts
 (

M
)

Incast/Background Ratio

Random Deflection ECMP

2. Deflection causes heavy reordering

Up to 10x more out-of-order packets
~17% Goodput reduction
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of line blocking & starvation
111% longer waits for 
mice flows (<100KB)

Setup
• 4-8-40 Two-tiered leaf-spine
• 10GB server-to-ToR, 40GB aggregate links
• DCTCP transport
• Workload: FB cache, fixed background + variable Incast



Random deflection causes head-of-the-line blocking
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Random deflection saves 
flows regardless of their 

size

A Large flow continues to send traffic 
instead of backing off

Short flows are stuck in congested 
buffers

Neighbor buffers fill up, innocent flows 
are victimized



Random deflection breaks under load
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Deflected packets traverse longer 
paths

Network utilization is increased

The senders do not back-off in-time, 
exacerbating the congestionPacket loss, the main congestion 

signal for congestion control 
techniques is removed from the 
equation 

Network collapses under load!

With 
random 

deflection
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Solution
Detecting the flows that are more likely to contribute to lasting 

congestion and prioritizing their packets for: 
(a) deflection under light load

(b) drop under high load

Problem
 Random deflection treats the flows contributing to long lasting 

congestion similar to short-lived microbursts



Host-assisted deflection
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Flow size information
(remaining flow size to 

realize an approximation of 
SRPT)

Handling re-ordering

Congestion-aware + flow-aware 
forwarding decisions

Remaining flow size, a good indicator for lasting congestion.



Vertigo: the big picture
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Preventing collapse using flow length information
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Vertigo Fabric
I. Forwarding: Least remaining flow size

II. Congestion: Deflect instead of Drop
III.Deflection: Highest remaining flow size

IV.Load-balancing: Power of 2 choices

Vertigo identifies the packet with highest 
remaining flow size from a full buffer

Randomly chooses two destination 
buffers, selects the one with least queue 
occupancy

Deflects the selected packet to chosen 
buffer

Inserts the arrived flow to its correct 
position w.r.t. its remaining flow size

SI

SIII

To Switch SIII

To Switch SI

SII

To Switch SII

Packet from a short flow arrives at a full 
buffer



Vertigo components at the host

• Marking the packets based on remaining flow size

• Detecting re-transmissions to ensure consistency

• Boosting re-transmissions to avoid starvation
• Re-transmitted packets appear as packets of a small flow

• Ordering shim layer at the destination

• Detailed design can be found in paper
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Simulation results: Vertigo’s superior performance
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Setup
• 4-8-40 Two-tiered leaf-spine
• 10GB server-to-ToR, 40GB aggregate links
• DCTCP transport
• Workload: FB cache, fixed background + var. 

Incast

ECMP DRILL DIBS Vertigo

76%54%57%

Improvements in tail 
query completion times 
at the highest load

Vertigo & DIBS, same drop rate, different outcomes!FCT of all flows (large and 
small) grow gracefully under 
Vertigo



Vertigo achieves near-0 drops with Swift

0.00

0.01

0.10

1.00

10.00

35 45 55 65 75 85 95

P
9

9
 Q

C
T

 (
S)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

15

-1

1

3

5

7

9

11

13

35 45 55 65 75 85 95

#
 P

A
C

K
E

T
 D

R
O

P
S 

(M
)

OFFERED LOAD %

ECMP DRILL DIBS Vertigo

Swift cuts the tail QCT for all 
systems

Vertigo offers near-zero drop 
performance when combined 
with Swift
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Deflection helps 
complete incasts faster

Scheduling prevents 
collapse under high loads

Ordering layer improves 
application throughput

Reduced probability of finding free 
buffersImpact of power of 

two forwarding    
vs random
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Boosting prevents starvation, helps complete flows
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Deflection: Cuts the completion time tail

Scheduling: Prevents the collapse

Ordering: Preserves app throughput

Boosting: Prevents starvation



Vertigo Conclusions

18

Key Takeaway:
 To properly react to microbursts, network-centric real-time action and end-host’s advance 

knowledge of flow sizes are vital!

Challenges:
• Both host and network must be changed

• Existing queue management abstractions are not enough

Check out Vertigo artifacts!
https://github.com/hopnets/vertigo-artifacts

Vertigo:
A hybrid solution to tolerate micro-scale bursty traffic by changing the forwarding decisions 

upon facing imminent packet loss



Thank you!
Contact us

• sabdous1@jhu.edu

• erfan@cs.jhu.edu
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Backup slides
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Handling packet reordering

• Mark packets with remaining flow size (RFS) @sender

• Flow size tracking is transport-independent

• RFS must be unique per-flow

• RFS used @destination to order the packets
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?
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NIC

VERTIGO 
Marking layer

Network Stack

0    #
1    #
2    #
3    #
..

Pre-allocated Per-flow 
ordering buffers

Delayed packets

In-order packets 
immediately 
flushed to upper 
layers



Saying no to starvation

• Keeping track of re-transmissions to ensure RFS consistency

• Boost the re-transmitted packet by cutting its RFS
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Simple marking by counting upwards

What if flow size information is not available?
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